Reaction between Enamines and Schiff Basess.¹⁾ Evidence for the Thermal [2+2] Cycloaddition Reaction

Yujiro Nomura,* Muneaki Kimura, Tomoyuki Shibata,
Yoshito Takeuchi, and Shuji Tomoda

Department of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

(Received February 25, 1982)

Synopsis. Reaction between 4-(1-phenyl-1-propenyl) m crpholine and N-benzylideneanilines provided N-(3-aryl-2-methyl-1-phenylallylidene) anilines in 60-65% yields, which unequivocally established the initial [2+2] cycloaddition reaction between enamines and Schiff bases.

Thermal [2+2] cycloaddition reactions are generally prohibited by the Woodward-Hoffmann rule.²⁾ Several exceptions involving Schiff bases include reactions with electron-deficient double bonds, such as heterocumulenes, N=O bond, and C=C bond carrying highly electronegative substituents.³⁾ More recently, titanium-(IV) chloride-mediated [2+2] cycloadditions between Schiff bases and ketene acetals, representative electronrich olefins, have been reported.⁴⁾

In our previous communications, we postulated thermal [2+2] cycloaddition reaction between *N*-benzylideneanilines and enamines, another class of highly nucleophilic olefins, as the most reasonable explanation for the formation of decahydroacridines⁵⁾ and hexahydro-4-azaindacenes⁶⁾ in acetic acid as the solvent. We wish to present herein direct evidence for the intermediacy of the [2+2] cycloadduct in the reaction between the enamine (1) and the Schiff bases (2) in acetic acid.

The reactions between N-benzylideneanilines (2) and 4-(1-phenyl-1-propenyl)morpholine (1) were performed at room temperature under nitrogen using acetic acid as the solvent. The products, N-(3-aryl-2-methyl-1-phenylallylidene)anilines (3), were obtained in 60—65% yield after recrystallization from methanol (Table 1).

Structural assignments of these products were based on elemental analysis, spectroscopic methods and independent synthesis of their hydrolyzed products. For example, **3a**, which had a sharp melting point (mp 108—109 °C), showed strong IR absorption bands at

1605 and 1590 cm⁻¹, one of which can be assigned to the conjugated imine moiety. On the other hand, the ¹H NMR spectrum, obtained as a solution in deuteriochloroform, exhibited two methyl doublets (in each case, J=1 Hz; assigned to allylic coupling with the olefinic proton) due to syn-anti isomerism about the C=N double bond (Table 2). The relatively large difference in the chemical shifts of the methyl group between the syn and anti isomers of **3a** ($\Delta \delta$ =0.58) can be attributed to the strong shielding effect of the N-aryl ring (Ar²) on the methyl protons in the syn isomer⁷ which may most probably exist as the s-trans conformational isomer by steric reasons.

Since these spectral and analytical informations alone may not be sufficient to prove the structure 3a, we hydrolyzed it with MeOH-HCl to obtain the a,β -unsaturated ketone (4a) virtually quantitatively (98% yield). The ¹H NMR spectrum of 4a indicated one methyl doublet (J=1 Hz) in accord with nearly complete stereospecificity of the reaction leading to 3a. This was also in agreement with the experimental observation that the stereoisomerism observed for 3 by ¹H NMR is due to syn-anti isomerism rather than cis-trans isomerism involving the olefinic C=C double bond. The structure of 4a was confirmed by spectral (IR and ¹H NMR) comparison with an authentic sample prepared by the aldol condensation between p-chlorobenzaldehyde and propiophenone. ⁸⁾

The present reaction can be rationalized by the mechanism illustrated in Scheme 1. Reaction between 1 and 2 would produce the azetidine intermediate (5) either by concerted [2+2] cycloaddition or by stepwise cycloaddition via zwitterionic intermediate as 6. The azetidine intermediate 5 would rapidly undergo deamination in the acid medium to afford 2-azetine derivative

Table 1. Synthesis and properties of 3

$$X - \underbrace{\begin{array}{c} Ph \\ -CH = C - C = N - \\ Me \\ 3 \end{array}} - Y$$

Compd	х	Y	${ m Mp}~ heta_{ m m}/{ m ^{\circ}C^{a}}$	Yield/%b)	$\mathbf{M}^+(m/e)$	Mol. Formula	Found (Calcd) (%)			
							$\widehat{\mathbf{c}}$	Н	N	Cl
3a	Cl	Н	108—109	62	331	$\mathrm{C}_{22}\mathrm{H}_{18}\mathrm{NCl}$	79.83 (79.63	5.24 5.47	4.31 4.22	10.95 10.68)
3ь	Cl	Cl	112—113	60	365	$\mathrm{C_{22}H_{17}NCl_2}$	71.86 (72.14	4.53 4.68	4.07 3.82	19.52 19.36)
3c	Cl	CH ₃ O	132—133	63	361	$\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{NOCl}$	76.26 (76.34	5.43 5.57	3.86 3.87	9.83 9.80)
3d	NO_2	Н	140—141	65	342	$C_{22}H_{18}N_2O_2$	77.34 (77.17	5.24 5.30	8.04 8.18)	

a) Uncorrected. b) Isolated yield (recrystallized from methanol). c) Measured at 70 eV.

Table 2. ¹H NMR spectra of syn and anti isomers of 3^{a)}

$$A_{r}^{1}-CH$$

	9,11 0				
Compd	$\underbrace{\delta \text{ (M)}}_{syn}$	[e) ^{b)} anti	$\delta(\mathrm{sp^2 ext{-}protons})^{\mathrm{c}}$	syn: anti ^{d)}	
3a	1.78	2.36	6.3—7.9	32:68	
3b	1.82	2.35	6.1—8.1	34:66	
3c	1.84	2.38	6.4-8.0	31:69	
3 d	1.88	2.40	6.4—8.1	35:65	

a) 100 MHz NMR spectra obtained in CDCl₃ with tetramethylsilane as internal standard. Assignments of these isomers were based on Ref. 7. b) Each peak shows up as a finely-split doublet with a coupling constant of about 1 Hz. c) Benzylidene and aromatic protons (multiplet). d) Determined by ¹H NMR integration of the methyl groups.

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Scheme 1. Mechanism for the formation of 3.

7, which would then collapse into the conjugated imine 3 by ring-opening process. Whether the [2+2] cycloaddition route is concerted or stepwise, it is intriguing that this route appears to be operative only in acetic acid.9)

Experimental

Enamine (1) was prepared according to the procedure previously described. 10) N-Benzylideneanilines (2) were prepared by the known method.¹¹⁾ Acetic acid was distilled over phosphorus pentaoxide under nitrogen. Melting points were uncorrected. IR spectra were recorded as nujol paste with a HITACHI EPS-3T Recording Spectrometer. ¹H NMR spectra were obtained on a JEOL JNM-MH-100 Spectrometer operated at 100 MHz. Elemental analyses were performed by Organic Analysis Laboratory of the University of Tokyo.

General Procedure for the Reaction between 1 and 2: A solution of 2 (41 mmol) in anhydrous acetic acid (100 ml) was slowly added to enamine (1) (10.4 g, 51 mmol) with stirring at room temperature under nitrogen. The resulting yellow precipitates, obtained after 7 h stirring, were collected by filtration and recrystallized from methanol to give product 3 in 60-65% yields (see Tables 1 and 2 for pertinent data of 3).

References

- 1) Enamines X of this series: Enamines IX, Ref. 6.
- 2) R. B. Woodward and R. Hoffmann, "The Conservation
- of Orbital Symmetry," Academic Press, New York (1970).
 3) J.-P. Anselme, "Chemistry of the Carbon-Nitrogen Double Bond," ed by S. Patai, Interscience, New York (1970).
- I. Ojima, S. Inaba, and K. Yoshida, Tetrahedron Lett., **1977**, 3643.
- Y. Nomura, S. Tomoda, and Y. Takeuchi, Chem. Lett., 5) 1972, 79.
- 6) Y. Nomura, M. Kimura, Y. Takeuchi, and S. Tomoda, Chem. Lett., 1978, 427.
- 7) D. Y. Curtin and J. W. Hausser, J. Am. Chem. Soc., **83**, 3474 (1961).
 - 8) E. P. Kohler, Am. Chem. J., 31, 655 (1904).
- 9) Reactions between enamines and Schiff bases in neutral solvent, such as methanol, afford Stork products: see, S. Tomoda, Y. Takeuchi, and Y. Nomura, Tetrahedron Lett., 40, 3549 (1969).
- 10) R. W. Layer, Chem. Rev., 63, 489 (1963).
- 11) S. Hünig, E. Lücke, and W. Brenninger, Org. Synth., **41**, 65 (1961).